Главная - Теория АЭС - Зачем это нужно ?

Зачем это нужно ?
АЭС - Теория АЭС

зачем это нужно ?

В настоящее время, более 85% энергии производимой человеком получается при сжигании органических топлив - угля, нефти и природного газа. Этот дешевый источник энергии, освоенный человеком около 200 - 300 лет назад, привел к быстрому развитию человеческого общества, его благосостоянию и, как результат, к росту народонаселения Земли. Предполагается, что из-за роста народонаселения и более равномерного потребления энергии по регионам, производство энергии возрастет к 2050 г примерно в три раза по сравнению с нынешним уровнем и достигнет 1021 Дж в год. Не вызывает сомнения, что в обозримом будущем прежний источник энергии - органические топлива - придется заменить на другие виды производства энергии. Это произойдет как по причине истощения природных ресурсов, так и по причине загрязнения окружающей среды, которое по оценкам специалистов должно наступить гораздо раньше, чем будут выработаны дешевые природные ресурсы (нынешний способ производства энергии использует атмосферу в качестве помойки, выбрасывая ежедневно 17 млн. тонн углекислого и других газов, сопутствующих сжиганию топлив). Переход от органических топлив к широкомасштабной альтернативной энергетике ожидается в середине 21 века. Предполагается, что будущая энергетика будет более широко, чем нынешняя энергетическая система, использовать разнообразные и, в том числе, возобновляемые источники энергии, такие как: солнечная энергия, энергия ветра, гидроэлектроэнергия, выращивание и сжигание биомассы и ядерная энергия. Доля каждого источника энергии в общем производстве энергии будет определяться структурой потребления энергии и экономической эффективностью каждого из этих источников энергии.

В нынешнем индустриальном обществе более половины энергии используется в режиме постоянного потребления, не зависящего от времени суток и сезона. На эту постоянную базовую мощность накладываются суточные и сезонные колебания. Таким образом, энергетическая система должна состоять из базовой энергетики, которая снабжает общество энергией на постоянном или квазипостоянном уровне, и энергетических ресурсов, которые используются по мере надобности. Ожидается, что возобновляемые источники энергии такие, как солнечная энергия, сжигание биомассы и др., будут использоваться в основном в переменной составляющей потребления энергии. Основной и единственный кандидат для базовой энергетики - это ядерная энергия. В настоящее время, для получения энергии освоены лишь ядерные реакции деления, которые используются на современных атомных электростанциях. Управляемый термоядерные синтез, пока, лишь потенциальный кандидат для базовой энергетики.

Ядерная энергетика, энергия деления атома, имеет большие плюсы перед традиционными способами получения энергии, такими как сжигание минеральных и биологических ресурсов. В отличии от ТЭС (тепловой электрической станции), где тепло получается путем сжигания топлива от дров до нефти и угля, атомная энергетика использует энергию реакции распада атомов тяжелых элементов, в основном урана. Атомная энергия гораздо чище энергии сжигания топлива. Выбросы атомных электростанций на порядки меньше загрязняют окружающую среду, чем выбросы обычных тепловых станций. У большинства развитых стран мира атомная энергетика имеет весьма значительную долю в общем энергобалансе. Например во Франции на долю атомных электростанций приходится свыше 80% всей получаемой энергии. Однако атомные электростанции требуют очень высокой квалификации обслуживающего персонала и строгого контроля за абсолютно всеми параметрами, иначе, в случае аварии, выбросы вредных веществ могут существенно превысить выбросы тепловых станций. Еще одна существенная, но решаемая проблема атомной энергетики - утилизация отходов. К сожалению, в настоящее время самым простым, и как следствие, самым дешевым способом утилизации радиоактивных отходов является их захоронение. Более экологичные способы утилизации: разделение на долгоживущие и короткоживущие изотопы, сжигание в атомных реакторах радиоактивных отходов, сжигание радиоактивных отходов в недрах звезд (в том числе и солнце) - пока экономически не выгодны.

Какие же преимущества имеет термоядерный синтез по сравнению с ядерными реакциями деления, которые позволяют надеяться на широкомасштабное развитие термоядерной энергетики? Основное и принципиальное отличие заключается в отсутствии долгоживущих радиоактивных отходов, которые характерны для ядерных реакторов деления. И хотя в процессе работы термоядерного реактора первая стенка активируется нейтронами, выбор подходящих низкоактивируемых конструкционных материалов открывает принципиальную возможность создания термоядерного реактора, в котором наведенная активность первой стенки будет снижаться до полностью безопасного уровня за тридцать лет после остановки реактора. Это означает, что выработавший ресурс реактор нужно будет законсервировать всего на 30 лет, после чего материалы могут быть переработаны и использованы в новом реакторе синтеза. Эта ситуация принципиально отличается от реакторов деления, которые производят радиоактивные расходы, требующие переработки и хранения в течении десятков тысяч лет. Кроме низкой радиоактивности, термоядерная энергетика имеет огромные, практически неисчерпаемые запасы топлива и других необходимых материалов, достаточных для производства энергии в течении многих сотен, если не тысяч лет.

Именно эти преимущества побудили основные ядерные страны начать в середине 50 годов широкомасштабные исследования по управляемому термоядерному синтезу. В Советском Союзе и США к этому времени уже были проведены первые успешные испытания водородных бомб, которые подтвердили принципиальную возможность использования энергии ядерного синтеза в земных условиях. С самого начала стало ясно, что управляемый термоядерный синтез не имеет военного применения. В 1956 г исследования были рассекречены и с тех пор проводятся в рамках широкого международного сотрудничества. Водородная бомба была создана всего за несколько лет, и в то время казалось, что цель близка, и что первые крупные экспериментальные установки, построенные в конце 50 годов, получат термоядерную плазму. Однако, потребовалось более 40 лет исследований для того, чтобы создать условия, при которых выделение термоядерной мощности сравнимо с мощностью нагрева реагирующей смеси. В 1997 г самая крупная термоядерная установка - Европейский ТОКАМАК (JET) получила 16 МВт термоядерной мощности и вплотную подошла к этому порогу.

Что же явилось причиной такой задержки? Оказалось, что для достижения цели физикам и инженерам пришлось решить массу проблем, о которых и не догадывались в начале пути. В течении этих 40 лет была создана наука - физика плазмы, которая позволила понять и описать сложные физические процессы, происходящие в реагирующей смеси. Инженерам потребовалось решить не менее сложные проблемы, в том числе, научиться создавать глубокий вакуум в больших объемах, подобрать и испытать подходящие конструкционные материалы, разработать большие сверхпроводящие магниты, мощные лазеры и источники рентгеновского излучения, разработать импульсные системы питания, способные создавать мощные пучки частиц, разработать методы высокочастотного нагрева смеси и многое другое.

 


Читайте:


Добавить комментарий


Защитный код
Обновить

Новости с ЗАЭС:

Южно-Украинская АЭС желает продлить срок эксплуатации п

News image

Со стороны шведского регулирующего органа по радиационной безопасности поступило предложение продлить свое сотрудничество с Украиной, и они желают д...

СХОЯТ ЗАЭС – безопасность и экологическая чистота

News image

Запорожская АЭС получила лицензию государственного комитета ядерного регулирования Украины на ввод в опытно-промышленную эксплуатацию сухого хранили...

Новости с ЧАЭС:

Семинар МАГАТЭ

News image

По предварительным оценкам этап окончательного закрытия и консервации ЧАЭС начнется в 2013 году и составит около 10 лет (до 2022 г.). Главная цель э...

Получено разрешение на ввод в эксплуатацию Временного х

News image

10 декабря 2010 года Государственным комитетом ядерного регулирования Украины было подписано Отдельное разрешение № 000040/4 на эксплуатацию Временн...

Калининская АЭС запустила в сеть третий энергоблок

В 2012 году, 13 января третий энергоблок Калининской АЭС, который располагается в Тверской области был включен в сеть после тог...

На площадке PFBR-500 смонтирован главный корпус реактора

News image

На строительстве первого в Индии энергетического быстрого натриевого реактора PFBR-500 пройдён очередной этап. Индийские специал...

Планы создания АЭС в Белоруссии меняться не будут, несмотря

News image

Планы по строительству Белорусской АЭС меняться не будут на фоне событий в Японии на АЭС Фокусима-1 , заявил первый вице-премье...

Монтаж восстановленного вспомогательного оборудования реакто

News image

Специалисты холдинга Титан-2 завершили монтаж закладной люка герметичного транспортного коридора весом около 100 тонн на строя...

Французское правительство поддерживает ядерные реакторы EPR

News image

По сообщению газеты Thomson Financial, министр экологии, устойчивого развития и обустройства Франции Ален Жюппе (Alain Juppe) по...

Создание управляющей сети «Атом - ЖКХ»

News image

Билибинская АЭС, единственная атомная электростанция в зоне вечной мерзлоты, стала местом посещения рабочей группы по развитию ...

Росатом предложил Франции вместе сотрудничать во время строи

News image

  На данный момент Росатом полностью готов приступить к стратегическому партнерству по строительству АЭС в Турции либо Калинингра...

Британия может продлить сроки службы старейших магноксовых р

News image

Сроки службы двух британских магноксовых реакторов на АЭС Олдбёрри могут быть продлены. Управление по выводу из эксплуатации я...